4.6 Article

Bare and Sterically Stabilized PLGA Nanoparticles for the Stabilization of Pickering Emulsions

期刊

LANGMUIR
卷 34, 期 46, 页码 13935-13945

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b02558

关键词

-

资金

  1. Agence Nationale de la Recherche (ANR) [ANR-16-CE09-0003]
  2. Ministere de l'Education Nationale, de l'Enseignement Superieur et de la Recherche

向作者/读者索取更多资源

Pickering emulsions were formulated using biodegradable and biocompatible poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) prepared without surfactants or any other polymer than PLGA. A pharmaceutical and cosmetic oil (Miglyol) was chosen as the oil phase at a ratio of 10% w/w. These emulsions were then compared with emulsions using the same oil but formulated with well-described PLGA-poly(vinyl alcohol) (PVA) NPs, i.e., with PVA as NP stabilizers. Strikingly, the emulsions demonstrated very different structures at macroscopic, microscopic, and interfacial scales, depending on the type of NPs used. Indeed, the emulsion layer was significantly thicker when using PLGA NPs rather than PLGA-PVA NPs. This was attributed to the formation and coexistence of multiple water-in-oil-in-water (W/O/W) and simple oil-in-water (O/IAT) droplets, using a single step of emulsification, whereas simple O/W emulsions were obtained with PLGA-PVA NPs. The latter NPs were more hydrophilic than bare PLGA NPs because of the presence of PVA at their surface. Moreover, PLGA NPs only slightly lowered the oil/water interfacial tension whereas the decrease was more pronounced with PLGA-PVA NPs. The PVA chains at the PLGA-PVA NP surface could probably partially desorb from the NPs and adsorb at the interface, inducing the interfacial tension decrease. Finally, independent of their composition, NPs were adsorbed at the oil/water interface without influencing its rheological behavior, possibly due to their mobility at their interface. This work has direct implications in the formulation of Pickering emulsions and stresses the paramount influence of the physicochemical nature of the NP surface into the stabilization of these systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据