4.8 Article

High-Loading Nickel Cobaltate Nanoparticles Anchored on Three-Dimensional N-Doped Graphene as an Efficient Bifunctional Catalyst for Lithium-Oxygen Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 28, 页码 18060-18068

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b04810

关键词

NiCo2O4 nanoparticles; 3D N-doped rGO; efficient bifunctional catalyst; long life; lithium-oxygen batteries

资金

  1. National Natural Science Foundation of China [51372115, 11575084]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

向作者/读者索取更多资源

The lithium-oxygen batteries have been considered as the progressive energy storage equipment for their expected specific energy. To improve the electrochemical catalytic performance in the lithium-oxygen batteries, the NiCo2O4. nanoparticles (NCONPs) are firmly anchored onto the surface of the N-doped reduced graphene oxide (N-rGO) by the hydrothermal method followed by low-temperature calcination. Compared with the pure metallic oxide, the introduction of the rGO can create the high surface area, which give a good performance for ORR (oxygen reduction reaction), and improve the electrical conductivity between the NCONPs. The high-loading NCONPs also ensure the material to have great catalytic activity for OER (oxygen evolution reaction), and the rGO can be protected by the nanoparticles coating against the side reaction with the Li2O2. The as-synthesized NCO@N-rGO composites deliver a specific surface area (about 242.5 m(2) g(-1)), exhibiting three-dimensional (3D) porous structure, which provides a large passageway for the diffusion of the oxygen and benefits the infiltration of electrolyte and the storage of the discharge products. Owing to these special architectures features and intrinsic materials, the NCO@N-rGO cathode delivers a high specific capacity (6716 mAh g(-1)), great rate performance, and excellent cycling stability with cutoff capacity of 1000 mAh g(-1) (112 cycles) in the lithium-oxygen batteries. The improved electrochemical catalytic activity and the special 3D porous structure make the NCO@N-rGO composites be a promising candidate for Li-O-2 batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据