4.8 Article

Role of Graphene Oxide Liquid Crystals in Hydrothermal Reduction and Supercapacitor Performance

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 34, 页码 22316-22323

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b05779

关键词

graphene; supercapacitor; liquid crystal; energy storage; coating

资金

  1. The Fundamental Research Funds for Central Universities through Beihang University

向作者/读者索取更多资源

The formation of liquid crystal (LC) phases in graphene oxide (GO) aqueous solution is utilized to develop high-performance supercapacitors. To investigate the effect of LC formation on the properties of subsequently reduced GO (rGO), we compare films prepared through blade-coating of viscous LC-GO solution and ultrasonic spray-coating, of diluted GO aqueous dispersion. After hydrothermal reduction under identical conditions, the films show different morphology, oxygen content, and specific capacitance. Trapped water in the LC GO film plays a role in preventing restacking of sheets and facilitating the removal of oxygenated groups during the reduction process. In device architectures with either liquid or polymer electrolyte, the specific capacitance of the blade-coated film is twice as high as that of the spray-coated one. For a blade-coated film with mass loading of 0.115 mg/cm(2), the specific capacitance reaches 286 F/g in aqueous electrolyte and 263 F/g in gelled electrolyte, respectively. This study suggests a route to pilot-scale production of high-performance graphene supercapacitors through blade-coated LC-GO films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据