4.8 Article

Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 9, 页码 5941-5960

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b01014

关键词

hydroxyapatite; mesoporous; electrospun scaffold; aloe vera; segmented polyurethane; guided bone regeneration; histology

向作者/读者索取更多资源

Guided bone regeneration (GBR) scaffolds are unsuccessful in many clinical applications due to a high incidence of postoperative infection. The objective of this work is to fabricate GBR with an anti-infective electrospun scaffold by ornamenting segmented polyurethane (SPU) with two-dimensional Aloe vera wrapped mesoporous hydroxyapatite (Al-mHA) nanorods. The antimicrobial characteristic of the scaffold has been retrieved from the prepared Al-mHA frame with high aspect ratio (similar to 14.2) via biosynthesis route using Aloe vera (Aloe barbadensis miller) extract. The Al-mHA frame was introduced into an unprecedented SPU matrix (solution polymerized) based on combinatorial soft segments of poly(epsilon-caprolactone) (PCL), poly(ethylene carbonate) (PEC), and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by eledrospinning to fabricate scaffolds. For comparison, pristine mHA nanorods are also ornamented into it. An enzymatic ring-opening polymerization technique was adapted to synthesize soft segment of (PCL-PEC-b-PDMS). Structure elucidation of the synthesized polymers is established by nuclear magnetic resonance spectroscopy. Sparingly, Al-mHA ornamented scaffolds exhibit tremendous improvement (175%) in the mechanical properties with promising antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast-like MG63 cells (in vitro), the scaffolds were implanted in rabbits as an animal model by subcutaneous and intraosseous (tibial) sites. Improved in vivo biocompatibilities, biodegradation, osteoconductivity, and the ability to provide an adequate biomimetic environment for biomineralization for GBR of the scaffolds (SPU, and ornamented SPUs) have been found from the various histological sections. Early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks were found in the defects filled with Al-mHA ornamented scaffold compared to pristine SPU scaffold. Organ toxicity studies further confirm the absence of appreciable tissue architecture abnormalities in the renal hepatic and cardiac tissue sections. The entire results of this study manifest the feasibility of fabricating a mechanically adequate tailored nanofibrous SPU scaffold based on combinatorial soft segments of PCL, PEC, and PDMS by a biomimetic approach and the advantages of an Aloe vera wrapped mHA frame in promoting osteoblast phenotype progression with microbial protection for potential GBR applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据