4.5 Article

Enhanced dielectric performance and energy storage density of polymer/graphene nanocomposites prepared by dual fabrication

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0892705718805522

关键词

Polymer; graphene; co-fabrication; dielectric constant; loss; energy density

资金

  1. National Research Foundation of South Africa [112238]

向作者/读者索取更多资源

Polymer/graphene nanocomposites (PGNs) have shown great potential as dielectric and energy storage materials. However, insolubility of graphene in most solvents, hydrophobic behaviour and poor dispersion in polymer matrix restrict wider fabrications and applications of PGNs. In this study, we present co-fabricated PGNs engineered by solution blending and melt compounding methods with improved dielectric performance. Further processing of PGNs by melt mixing after solution blending not only improved dispersion of graphene in the matrix but also ensured good interfacial interaction of the composites' constituents and reduction of oxygen content in PGNs. Graphene nanoplatelets used in this study was slightly functionalized (fGNPs) to enhance dispersion in the polymer matrix. It was later characterized using Fourier transform infrared (FTIR) and Raman spectrometer. Scanning electron microscope (SEM) was used in morphological study of the fabricated composites. Dielectric properties, electrical conductivity, breakdown strength and energy storage capacity of the fabricated composites were investigated. The results obtained showed well-dispersed fGNPs in poly (vinylidene fluoride) (PVDF) matrix and improved dielectric performance. For instance, with 3.34 wt% and 6.67 wt% fGNPs co-fabricated composites, dielectric constant increased from about 9 for neat PVDF to 9930 and 38,418 at 100 Hz, respectively. While 7588 and 12,046 were respectively measured for solution blended-only composites at similar fGNPs content. These resulted to about 176.9% and 376.4% increase in energy storage density with 3.34 wt% and 6.67 wt% fGNPs co-fabricated composites when compared to their counterparts. These results were also credited to strong bonding, reduction of oxygen and recovered graphene structure by melt-mixing approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据