4.6 Article

The effect of polyaspartate chain length on mediating biomimetic remineralization of collagenous tissues

期刊

出版社

ROYAL SOC
DOI: 10.1098/rsif.2018.0269

关键词

collagen; hydroxyapatite; crystallization; biomineralization; polyaspartate; amorphous calcium phosphate

资金

  1. Canadian Institutes of Health Research [MOP-142370]
  2. Ontario Graduate Scholarship
  3. Alexander Graham Bell Canada Graduate Scholarship

向作者/读者索取更多资源

Formation of hydroxyapatite (HAP) within collagen fibrils, as found in bone, dentine and cementum, is thought to be mediated by proteins rich in aspartate (Asp) and glutamate such as osteopontin and bone sialoprotein, respectively. Indeed polyaspartate (pAsp), a homopolymer analogue of such proteins, has been shown to induce intrafibrillar mineralization of collagen from solutions of calcium and phosphate that are supersaturated with respect to HAP. To elucidate the role of pAsp in mineralization of collagen, we explored the effect of pAsp chain length on in vitro HAP deposition in demineralized mouse periodontal tissue sections. Through characterization of both tissue sections and mineralizing solution, we show that chain length contributes to the effectiveness of pAsp in mediating intrafibrillar mineralization. This function appears to be associated with inhibition of otherwise kinetically favoured crystallization in the bulk solution, which allows for intrafibrillar crystallization, though this does not preclude the possibility of a more active role for pAsp in addition. Inhibition of crystallization in solution by pAsp occurs by slowing the growth of amorphous calcium phosphate and stabilization of this phase, rather than by sequestration of Ca2+ ions. These results suggest that the length of Asp-rich sequences of mineralizing proteins may be essential to their function, and could also be useful in optimization of mineralized tissue replacement synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据