4.8 Article

Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 34, 页码 22629-22636

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b05754

关键词

semipermeable ultrathin polymer membranes; microporous ultrathin polymer films; spin coating; microneedles; femtosecond laser machining; polymer replication

资金

  1. Tennessee Higher Education Commission
  2. National Center for Advancing Translational Sciences of the National Institutes of Health [UH2TR000491, UH3TR000491]
  3. Vanderbilt Institute for Integrative Biosystems Research and Education

向作者/读者索取更多资源

The basal lamina or basement membrane (BM) is a key physiological system that participates in physicochemical signaling between tissue types.. Its formation and function are essential in tissue maintenance, growth, angiogenesis, disease progression, and; immunology. In vitro models Of the BM (e.g., Boyden and transwell chambers) are common in cell biology and lab-on-a-chip devices where cells require apical and basolateral polarization. Extravasation, intravasation, membrane transport of chemokines, cytokines, chemotaxis of cells, and other key functions are routinely studied in these models. The goal of the present study was to integrate a semipermeable ultrathin polymer membrane with precisely positioned pores of 2 mu m diameter in a microfluidic device with apical and basolateral chambers. We selected poly(L-lactic acid) (PLLA), a, transparent biocompatible polymer, to prepare the semipermeable ultrathin membranes. The pores were generated by pattern transfer using a three-step method coupling femtosecond laser machining, polymer replication, and spin:coating. Each step of the fabrication process was characterized by scanning electron microscopy to investigate reliability of the process and fidelity of pattern transfer. In order to evaluate the compatibility of the fabrication method with organs-on-a-chip technology, porous PLLA membranes were embedded in polydimethylsiloxane (PDMS) microfluidic devices and used to grow human umbilical vein endothelial cells (HUVECS) on top of the membrane with perfusion through the basolateral chamber. Viability of cells, optical transparency of membranes and strong adhesion of PLLA to PDMS were observed, thus confirming the suitability of the prepared membranes for use, in organs-on-a-chip devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据