4.8 Article

Internal Oriented Electric Fields as a Strategy for Selectively Modifying Photochemical Reactivity

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 140, 期 50, 页码 17800-17804

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b12009

关键词

-

资金

  1. Australian Research Council (ARC) Centre of Excellence for Electromaterials Science

向作者/读者索取更多资源

Time-dependent density functional theory calculations have been performed on acetophenone derivatives to explore the possibility of using charged functional groups as internal electric fields, the orientation of which can be altered to change photochemical behavior at will. Results demonstrate that nonconjugated charged groups can significantly alter, by up to -1.44 eV, the stabilities of excited states. Specifically, a nonconjugated negatively charged group in the para position will destabilize the n pi* and stabilize the pi pi* transitions, while a positively charged group will do the opposite. These electrostatic effects can be tuned by moving these substituents into the meta and ortho positions. Through use of acids and bases, these charged groups can be switched on or off with pH, allowing for selective alteration of the energy levels and photochemical reactivity. Solvent effects are shown to attenuate the electric field effect with increasing dielectric permittivity; however electrostatic effects are shown to remain significant even in quite polar solvents. Using charged functional groups to deliver the position-dependent electrostatic (de)stabilization effects is therefore a potential route to improving the efficiency of desirable photochemical processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据