4.8 Article

An Adaptable Platform for Directed Evolution in Human Cells

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 140, 期 51, 页码 18093-18103

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b10937

关键词

-

资金

  1. NIH Director's New Innovator Award [1DP2GM119162]
  2. MISTI Global Seeds Fund
  3. European Union through the Sixth Framework Program GIANT [512087]
  4. NIGMS/NIH Inter-Departmental Biotechnology Training Program [T32-GM008334]
  5. National Science Foundation Graduate Research Fellowships [1122374]
  6. NIH/NIEHS [P30-ES002109]
  7. Cancer Center Support (core) Grant from the NIH/NCI [P30-CA14051]
  8. MIT

向作者/读者索取更多资源

The discovery and optimization of biomolecules that reliably function in metazoan cells is imperative for both the study of basic biology and the treatment of disease. We describe the development, characterization, and proof-of-concept application of a platform for directed evolution of diverse biomolecules of interest (BOIs) directly in human cells. The platform relies on a custom-designed adenovirus variant lacking multiple genes, including the essential DNA polymerase and protease genes, features that allow us to evolve BOIs encoded by genes as large as 7 kb while attaining the mutation rates and enforcing the selection pressure required for successful directed evolution. High mutagenesis rates are continuously attained by trans-complementation of a newly engineered, highly error-prone form of the adenoviral polymerase. Selection pressure that couples desired BOI functions to adenoviral propagation is achieved by linking the functionality of the encoded BOI to the production of adenoviral protease activity by the human cell. The dynamic range for directed evolution can be enhanced to several orders of magnitude via application of a small-molecule adenoviral protease inhibitor to modulate selection pressure during directed evolution experiments. This platform makes it possible, in principle, to evolve any biomolecule activity that can be coupled to adenoviral protease expression or activation by simply serially passaging adenoviral populations carrying the BOI. As proof-of-concept, we use the platform to evolve, directly in the human cell environment, several transcription factor variants that maintain high levels of function while gaining resistance to a small-molecule inhibitor. We anticipate that this platform will substantially expand the repertoire of biomolecules that can be reliably and robustly engineered for both research and therapeutic applications in metazoan systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据