4.8 Article

Layered-Crossover Tiles with Precisely Tunable Angles for 2D and 3D DNA Crystal Engineering

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 140, 期 44, 页码 14670-14676

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b07180

关键词

-

资金

  1. National Science Foundation

向作者/读者索取更多资源

DNA tile-based assembly provides a promising bottom-up avenue to create designer two-dimensional (2D) and three-dimensional (3D) crystalline structures that may host guest molecules or nanoparticles to achieve novel functionalities. Herein, we introduce a new kind of DNA tiles (named layered-crossover tiles) that each consists of two or four pairs of layered crossovers to bridge DNA helices in two neighboring layers with precisely predetermined relative orientations. By providing proper matching rules for the sticky ends at the terminals, these layered-crossover tiles are able to assemble into 2D periodic lattices with precisely controlled angles ranging from 20 degrees to 80 degrees. The layered-crossover tile can be slightly modified and used to successfully assemble 3D lattice with dimensions of several hundred micrometers with tunable angles as well. These layered-crossover tiles significantly expand the toolbox of DNA nanotechnology to construct materials through bottom-up approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据