4.8 Article

Nano-Assemblies from J-Aggregated Dyes: A Stimuli-Responsive Tool Applicable To Living Systems

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 141, 期 1, 页码 402-413

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b10396

关键词

-

资金

  1. National Natural Science Foundation of China [51673101, 81601590]
  2. Natural Science Foundation of Tianjin of China [15JCZDJC65800]
  3. Fundamental Research Funds for Central Universities (China)

向作者/读者索取更多资源

Controlling the packing arrangements of dyes is a facile way of tuning their photophysical and/or photochemical properties, thus enabling new sensing mechanisms for photofunctional tools. Here, we present a general and robust strategy toward water-stable J-aggregated dye-templated nanoassemblies by incorporating an amphiphilic diblock copolymer and a stimuli-responsive dye as the only two building components. An iodo-substituted boron dipyrromethene (BODIPY) was adopted as a template to direct the self-assembly of poly(ethylene glycol)-block-polycaprolactone (PEG-PCL), forming a core shell nano plate with slip-stacked BODIPYs as core surrounded by hydrophilic PEG shell. The self-assembled nanoplate is stable in cell culture medium and possesses a built-in stimuli-responsiveness that arises from BODIPY bearing meso-carboxylate protecting group, which is efficiently removed upon treatment with peroxynitrite. The resulting negative charges lead to rearrangement of dyes from J-stacking to nonstacking, which activates photoinduced singlet oxygen production from the nanoassemblies. The stimuli-activatable photosensitivity has been exploited for specific photodynamic ablation of activated RAW 264.7 cells with excessive endogenous peroxynitrite. In light of the generality of the sensing mechanism, the concept described herein will significantly expand the palette of design principles to develop diverse photofunctional tools for biological research and clinical needs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据