4.8 Article

Multicolor Heterostructures of Two-Dimensional Layered Halide Perovskites that Show Interlayer Energy Transfer

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 140, 期 46, 页码 15675-15683

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b07843

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-09ER46664]
  2. NSF graduate fellowship
  3. National Natural Science Foundation of China [51525202, 61574054]

向作者/读者索取更多资源

Fabrication of heterostructures using two-dimensional (2D) materials with different bandgaps creates opportunities for exploring new properties and device applications. Ruddlesden-Popper (RP) layered halide perovskites have recently emerged as a new class of solution-processable 2D materials that demonstrate exotic optoelectronic properties. However, heterostructures using 2D halide perovskites have not been achieved. Here, we report a simple solution growth method for making vertically stacked double heterostructures and complex multilayer heterostructures of 2D lead iodide perovskites [(PEA)(2)(MA)(n-1)PbnI3n+1, PEA = C6H5(CH2)(2)NH3+, MA = CH3NH3+] via van der Waals epitaxy. These heterostructures present atomically sharp interfaces and display distinct photoluminescence that allow fingerprinting the RP phases. Time resolved photoluminescence measurements reveal internal energy transfer from higher energy bandgap (lower n value) perovskite layers to lower energy bandgap (higher n value) perovskite layers on the time scale of hundreds of picoseconds due to natural type I band alignments. These results offer new strategies to fabricate perovskite-perovskite heterojunctions by taking advantage of surface-bound ligands as spatial barriers to prevent ion migration across the junctions. These heterostructures capable of multicolor emission with high spectral purity are promising for light-emitting applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据