4.5 Article

Sound radiation and transonic boundaries of a plate with an acoustic black hole

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 145, 期 1, 页码 164-172

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.5081680

关键词

-

资金

  1. Research Grant Council of the Hong Kong SAR [PolyU 152017/17E]
  2. National Science Foundation of China [11532006]

向作者/读者索取更多资源

The acoustic black hole (ABH) phenomenon has shown promise for noise and vibration control applications. In this paper, a two-dimensional (2-D) Daubechies wavelet (DW) model is established for the sound radiation prediction of plates embedded with a circular ABH indentation. ABH plates are shown to exhibit a reduced sound radiation efficiency as compared with their flat counterpart. Below the critical frequency, this is caused by the weakening of the structural stiffness due to the ABH indentation. Above the critical frequency, a subsonic region inside the ABH cell may appear, containing acoustically slow structural waves. This region, confined within a transonic boundary, is due to the ABH-specific phase velocity reduction of the bending waves. Drawing energy away from the supersonic region of the plate, this subsonic region warrants a reduced sound radiation to the far field. Numerical results on the investigated configuration show an increase in the sound radiation efficiency due to the added stiffness effect of damping layers. Sound radiation efficiency alongside the transonic boundary changes is scrutinized and quantified. Visualization of the supersonic acoustic intensity and radiation allows identifying the effective sound radiation regions of ABH plates and their relationship with the transonic boundaries at different frequencies. (C) 2019 Acoustical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据