4.6 Article

Entanglement Hamiltonian evolution during thermalization in conformal field theory

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1742-5468/aae84e

关键词

entanglement entropies; entanglement in extended quantum systems; thermalization

资金

  1. Gordon and Betty Moore Foundation's EPiQS initiative [GBMF4303]
  2. NSF [DMR-1309667, NSF PHY-1125915 (SR)]

向作者/读者索取更多资源

In this work, we study the time evolution of the entanglement Hamiltonian during the process of thermalization in a (1+1)-dimensional conformal field theory (CFT) after a quantum quench from a special class of initial states. In particular, we focus on a subsystem which is a finite interval at the end of a semi-infinite line. Based on conformal mappings, the exact forms of both entanglement Hamiltonian and entanglement spectrum of the subsystem can be obtained. Aside from various interesting features, it is found that in the infinite time limit the entanglement Hamiltonian and entanglement spectrum are exactly the same as those in the thermal ensemble. The entanglement spectrum approaches the steady state spectrum exponentially in time. We also study the modular flows generated by the entanglement Hamiltonian in Minkowski spacetime, which provides us with an intuitive picture of how the entanglement propagates and how the subsystem is thermalized. Furthermore, the effect of a generic initial state is also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据