4.8 Article

High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 21, 页码 13426-13436

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b02903

关键词

energy storage materials; ion gels; nanostructures; ionic liquids; renewable polymers; supercapacitors

资金

  1. National Science Foundation [CBET 1437814, DMR 1207221]
  2. Office of Naval Research [N0014-12-1-0777]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [1207221] Funding Source: National Science Foundation
  5. Div Of Chem, Bioeng, Env, & Transp Sys
  6. Directorate For Engineering [1437814] Funding Source: National Science Foundation

向作者/读者索取更多资源

Strong, solid polymer electrolyte ion gels, with moduli in the MPa range, a capacitance of 2 mu F/cm(2), and high ambient ionic conductivities (>1 x 10(-3) S/cm), all at room temperature, have been prepared from butyl-N-methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide (PYR14TESI) and methyl cellulose (MC). These properties are particularly attractive for supercapacitor applications. The ion gels are prepared by codissolution of PYR14TESI and MC in N,N-dimethylformamide (DMF), which after heating and subsequent cooling form a gel. Evaporation of DMF leave thin, flexible, self-standing ion gels with up to 97 wt % PYR14TFSI, which have the highest combined moduli and ionic conductivity of ion gels to date, with an excellent electrochemical stability window (5.6 V). These favorable properties are attributed to the immiscibility of PYR14TESI in MC, which permits the ionic conductivity to be independent of the MC at low MC content, and the in situ formation of a volume spanning network of semicrystalline MC nanofibers, which have a high glass transition temperature (T-g = 190 degrees C) and remain crystalline until they degrade at 300 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据