4.3 Article

Techno-Economics of Cogeneration Approaches for Combined Power and Desalination From Concentrated Solar Power

出版社

ASME
DOI: 10.1115/1.4042061

关键词

cogeneration; Rankine cycle; Brayton cycle; thermal desalination; CSP; cost

资金

  1. Solar Energy Technologies Office [DE-EE0007110]

向作者/读者索取更多资源

For many decades, integration of concentrated solar power (CSP) and desalination relied solely on the use of conventional steam Rankine cycles with thermally based desalination technologies. However, CSP research focus is shifting toward the use of supercritical CO2 Brayton cycles due to the significant improvement in thermal efficiencies. Here, we present a techno-economic study that compares the generated power and freshwater produced from a CSP system operated with a Rankine and Brayton cycle. Such a study facilitates co-analysis of the costs of producing both electricity and water among the other trade-off assessments. To minimize the levelized cost of water (LCOW), a desalination facility utilizing multi-effect distillation with thermal vapor compression (MED/TVC) instead of multistage flash distillation (MSF) is most suitable. The technoeconomic analysis reveals that in areas where water production is crucial to be optimized, although levelized cost of electricity (LCOE) values are lowest for wet-cooled recompression closed Brayton cycle (RCBR) with MSF (12.1 cents/kWhe) and MED/TVC (12.4 cents/kWhe), there is only a 0.35 cents/kWhe increase for dry-cooled RCBR with MED/TVC to a cost of 12.8 cents/kWhe. This suggests that the best candidate for optimizing water production while minimizing both LCOW and LCOE is dry-cooled RCBR with MED/TVC desalination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据