4.6 Article

Using pedological knowledge to improve sediment source apportionment in tropical environments

期刊

JOURNAL OF SOILS AND SEDIMENTS
卷 19, 期 9, 页码 3274-3289

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11368-018-2199-5

关键词

Erosion processes; Geochemical fingerprinting; Sediment particle size; Sediment sources; Sediment tracing; Tropical soils

资金

  1. Coordination of Improvement of Higher Level Education Personnel - CAPES [001, 88881.190317/2018-01]
  2. National Counsel of Technological and Scientific Development - CNPq [306511-2017-7, 202938/2018-2, 150.689/2017-8]
  3. Minas Gerais State Research Foundation -FAPEMIG [CAG-APQ01053-15]

向作者/读者索取更多资源

Purpose Soils are important regulators of Critical Zone processes that influence the development of geochemical signals used for sediment fingerprinting. In this study, pedological knowledge of tropical soils was incorporated into sediment source stratification and tracer selection in a large Brazilian catchment. Materials and methods In the Ingai River basin (similar to 1200 km(2)), Brazil, three source end-members were defined according to the interpretation of soil and geological maps: the upper, mid, and lower catchment. A tributary sampling design was employed, and sediment geochemistry of three different size fractions was analyzed (2-0.2 mm; 0.2-0.062 mm, and < 0.062 mm). A commonly used statistical methodology to element selection was compared to a knowledge-based approach. The mass balance un-mixing models were solved by a Monte Carlo simulation. Modeled source contributions were evaluated against a set of artificial mixtures with known source proportions. Results and discussion For the coarse fraction (2-0.2 mm), both approaches to element selection yielded high errors compared to the artificial mixtures (23.8% and 17.8% for the statistical and the knowledge-based approach, respectively). The knowledge-based approach provided the lowest errors for the intermediate (0.2-0.062 mm) (10.9%) and fine (< 0.062 mm) (11.8%) fractions. Model predictions for catchment outlet target samples were highly uncertain for the coarse and intermediate fractions. This is likely the result of the spatial scale of the source stratification not being able to represent sediment dynamics for these fractions. Both approaches to element selection show that most of the fine sediments (median > 90%) reaching the catchment outlet were derived from Ustorthents in the lower catchment. Conclusions The different element selection methods and the artificial mixtures provide multiple lines of evidence for evaluating the fingerprint approaches. Our findings highlight the importance of considering pedogenetic processes in source stratification, and demonstrate that different sampling strategies might be necessary to model specific sediment fractions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据