4.6 Article

Functional brain networks and neuroanatomy underpinning nausea severity can predict nausea susceptibility using machine learning

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 597, 期 6, 页码 1517-1529

出版社

WILEY
DOI: 10.1113/JP277474

关键词

neuroimaging; Autonomic Nervous system; Gastrointestinal tract; Human physiology; nausea; machine learning; motion sickness; functional magnetic resonance imaging

资金

  1. NC3Rs project grant [G0900797]
  2. MRC [MR/N026969/1, G0900805] Funding Source: UKRI

向作者/读者索取更多资源

Nausea is a highly individual and variable experience. The central processing of nausea remains poorly understood, although numerous influential factors have been proposed, including brain structure and function, as well as autonomic nervous system (ANS) activity. We investigated the role of these factors in nausea severity and if susceptibility to nausea could be predicted using machine learning. Twenty-eight healthy participants (15 males; mean age 24 years) underwent quantification of resting sympathetic and parasympathetic nervous system activity by heart rate variability. All were exposed to a 10-min motion-sickness video during fMRI. Neuroanatomical shape differences of the subcortex and functional brain networks associated with the severity of nausea were investigated. A machine learning neural network was trained to predict nausea susceptibility, or resistance, using resting ANS data and detected brain features. Increasing nausea scores positively correlated with shape variation of the left amygdala, right caudate and bilateral putamen (corrected P = 0.05). A functional brain network linked to increasing nausea severity was identified implicating the thalamus, anterior, middle and posterior cingulate cortices, caudate nucleus and nucleus accumbens (corrected P = 0.043). Both neuroanatomical differences and the functional nausea-brain network were closely related to sympathetic nervous system activity. Using these data, a machine learning model predicted susceptibility to nausea with an overall accuracy of 82.1%. Nausea severity relates to underlying subcortical morphology and a functional brain network; both measures are potential biomarkers in trials of anti-nausea therapies. The use of machine learning should be further investigated as an objective means to develop models predicting nausea susceptibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据