4.8 Article

Direct Cross-Linking of Au/Ag Alloy Nanoparticles into Monolithic Aerogels for Application in Surface-Enhanced Raman Scattering

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 20, 页码 13076-13085

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b11582

关键词

nanoparticle assembly; sol-gel method; Au/Ag alloy nanoparticles; direct cross-linking; surface-enhanced Raman spectroscopy

资金

  1. Department of Chemistry, Virginia Commonwealth University
  2. American Chemical Society-Petroleum Research Fund [52423-DNI10]
  3. US National Science Foundation [CHE-1337700]

向作者/读者索取更多资源

The direct cross-linking of Au/Ag alloy nanoparticles (NPs) into high surface area, mesoporous Au/Ag aerogels via chemical oxidation of the surface ligands is reported. The precursor alloy NPs with composition-tunable morphologies were produced by galvanic replacement of the preformed Ag hollow NPs. The effect of Au:Ag molar ratio on the NP morphology and surface plasmon resonance has been thoroughly investigated and resulted in smaller Au/Ag alloy NPs (4-8 nm), larger Au/Ag alloy hollow NPs (40-45 nm), and Au/Ag alloy hollow particles decorated with smaller Au NPs (2-5 nm). The oxidative removal of surfactant ligands, followed by supercritical drying, is utilized to construct large (centimeter to millimeter) self-supported Au/Ag alloy aerogels. The resultant assemblies exhibit high surface areas (67-73 m(2)/g), extremely low densities (0.051-0.055 g/cm(3)), and interconnected mesoporous (2-50 nm) networks, making them of great interest for a number of new technologies. The influence of mesoporous gel morphology on surface-enhanced Raman scattering (SERS) has been studied using Rhodamine 101 (Rd 101) as the probe molecule. The alloy aerogels exhibit SERS signal intensities that are 10-42 times higher than those achieved from the precursor Au/Ag alloy NPs. The Au/Ag alloy aerogel III exhibits SERS sensing capability down to 1 nM level. The increased signal intensities attained for alloy aerogels are attributed to highly porous gel morphology and enhanced surface roughness that can potentially generate a large number of plasmonic hot spots, creating efficient SERS substrates for future applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据