4.6 Article

Point Group Symmetry Analysis of the Electronic Structure of Bare and Protected Metal Nanocrystals

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 122, 期 43, 页码 8576-8584

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.8b07923

关键词

-

资金

  1. Academy of Finland [294217]
  2. Kalle Vaisala Foundation

向作者/读者索取更多资源

The electronic structures of a variety of experimentally identified gold and silver nanoclusters from 20 to 246 atoms, either unprotected or protected by several types of ligands, are characterized by using point group specific symmetry analysis. The delocalized electron states around the HOMO-LUMO energy gap, originating from the metal s-electrons in the cluster core, show symmetry characteristics according to the point group that describes best the atomic arrangement of the core. This indicates strong effects of the lattice structure and overall shape of the metal core to the electronic structure, which cannot be captured by the conventional analysis based on identification of spherical angular momentum shells in the superatom model. The symmetry analysis discussed in this paper is free from any restrictions regarding shape or structure of the metal core, and is shown to be superior to the conventional spherical harmonics analysis for any symmetry that is lower than I-h. As an immediate application, we also demonstrate that it is possible to reach considerable savings in computational time by using the symmetry information inside a conventional linear-response calculation for the optical absorption spectrum of the Ag-55 cluster anion, without any loss in accuracy of the computed spectrum. Our work demonstrates an efficient way to analyze the electronic structure of nonspherical, but atomically ordered nanocrystals and ligand-protected clusters with nanocrystal metal cores, and it can be viewed as the generalization of the superatom model demonstrated for spherical shapes 10 years ago (Walter, M.; et al. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9157-9162).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据