4.5 Article

Oxidation-Induced Destabilization of Model Antibody-Drug Conjugates

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 108, 期 3, 页码 1236-1245

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.xphs.2018.10.039

关键词

antibody-drug conjugate(s) (ADC); stability; oxidation(s); protein aggregation; conjugation; protein formulation(s); HPLC (high-performance/pressure liquid chromatography); thermal analysis

向作者/读者索取更多资源

Oxidation of biopharmaceutics represents a major degradation pathway, which may impact bioactivity, serum half-life, and colloidal stability. This study focused on the quantification of oxidation and its effects on structure and colloidal stability for a model antibody and its lysine (ADC-L) and cysteine (ADC-C) conjugates. The effects of oxidation were evaluated by a forced degradation study using H2O2 and a shelf-life simulation, which used degrading polysorbate 80 as source for reactive oxygen species. Differential scanning fluorimetry revealed decreasing transition temperatures of the CH2 domain with rising oxidation, resulting in a loss of colloidal stability as assessed by size-exclusion high pressure liquid chromatography. The conjugation technique influences structural changes of the monoclonal antibody (mAb) and subsequently alters the impact of oxidation. ADC-C was most effected by oxidation as the CH2 domain showed the biggest destabilization on conjugation compared to the mAb and ADC-L. Quantification of Fc methionine oxidation by analytical protein A chromatography revealed 4-fold higher oxidation after 8 weeks for the ADC-C compared to the mAb. Payload degradation was observed independently of the conjugation technique used or if free in solution by ultraviolet-visible. In addition, adding antioxidants can be a suitable approach to prevent oxidation and achieve baseline stabilization of the proteins. (c) 2019 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据