4.5 Article

Osteochondral regeneration using constructs of mesenchymal stem cells made by bio three-dimensional printing in mini-pigs

期刊

JOURNAL OF ORTHOPAEDIC RESEARCH
卷 37, 期 6, 页码 1398-1408

出版社

WILEY
DOI: 10.1002/jor.24206

关键词

bio 3D printing; bone; cartilage; regeneration; scaffold-free; stem cell

资金

  1. Japan Society for the Promotion of Science [15H04600]
  2. Grants-in-Aid for Scientific Research [15H04600] Funding Source: KAKEN

向作者/读者索取更多资源

Osteoarthritis is a major joint disease that has been extensively investigated in humans and in model animals. In this study, we examined the regeneration of articular cartilage and subchondral bone using artificial scaffold-free constructs composed of adipose tissue-derived mesenchymal stem cells (AT-MSCs) created using bio three-dimensional (3D) printing with a needle-array. Printed constructs were implanted into osteochondral defects created in the right femoral trochlear groove of six mini-pigs, using femoral defects created in the left femurs as controls. Repair within the defects was evaluated at 3 and 6 months post-implantation using computed tomography (CT) and magnetic resonance (MR) imaging. The radiolucent volume (RV, mm(3)) in the defects was calculated using multi-planar reconstruction of CT images. MR images were evaluated based on a modified 2D- MOCART (magnetic resonance observation of cartilage repair tissue) grading system. Gross and microscopic pathology were scored according to the ICRS (International Cartilage Repair Society) scale at 6 months after implantation. The percentage RV at 3 months postoperation was significantly lower in the implanted defects than in the controls, whereas total scores based on the MOCART system were significantly higher in the implanted defects as compared with the controls. Although there were no statistical differences in the gross scores, the average histological scores were significantly higher in the implanted defects than in the controls. To our knowledge, this is the first report to suggest that artificial scaffold-free 3D-printed constructs of autologous AT-MSCs can be aid in the osteochondral regeneration in pigs. (c) 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1398-1408, 2019.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据