4.7 Article Proceedings Paper

Motion Parallax in Stereo 3D: Model and Applications

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 35, 期 6, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2980179.2980230

关键词

stereoscopic 3D; gaze tracking; gaze-contingent display; eye tracking; retargeting; remapping

向作者/读者索取更多资源

Binocular disparity is the main depth cue that makes stereoscopic images appear 3D. However, in many scenarios, the range of depth that can be reproduced by this cue is greatly limited and typically fixed due to constraints imposed by displays. For example, due to the low angular resolution of current automultiscopic screens, they can only reproduce a shallow depth range. In this work, we study the motion parallax cue, which is a relatively strong depth cue, and can be freely reproduced even on a 2D screen without any limits. We exploit the fact that in many practical scenarios, motion parallax provides sufficiently strong depth information that the presence of binocular depth cues can be reduced through aggressive disparity compression. To assess the strength of the effect we conduct psycho-visual experiments that measure the influence of motion parallax on depth perception and relate it to the depth resulting from binocular disparity. Based on the measurements, we propose a joint disparity-parallax computational model that predicts apparent depth resulting from both cues. We demonstrate how this model can be applied in the context of stereo and multiscopic image processing, and propose new disparity manipulation techniques, which first quantify depth obtained from motion parallax, and then adjust binocular disparity information accordingly. This allows us to manipulate the disparity signal according to the strength of motion parallax to improve the overall depth reproduction. This technique is validated in additional experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据