4.7 Article

Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys

期刊

JOURNAL OF NUCLEAR MATERIALS
卷 512, 期 -, 页码 227-238

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnucmat.2018.10.017

关键词

Oxide dispersion strengthened (ODS) alloy; Strengthening mechanisms; Precipitation; Mechanical properties

资金

  1. Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, U.S. Department of Energy
  2. Department of Energy Nuclear Energy University Programs (NEUP) Graduate Fellowship

向作者/读者索取更多资源

Low-chromium (<10%Cr) high strength oxide dispersion strengthened (ODS) FeCrAl alloys are considered promising candidates for accident tolerant fuel cladding in light water fission reactors. These alloys are designed to combine the beneficial high temperature mechanical properties of ODS materials with the exceptionally high temperature oxidation resistance of FeCrAl in comparison to conventional Zr-containing cladding materials, while also providing good mechanical and aqueous corrosion behavior under normal light water reactor operating conditions. The initial (1st generation) ODS FeCrAl alloys combined gas atomized FeCrAl powders with yttria and other oxides for alloying element additions using the mechanical alloying approach. These alloys exhibited low ductility but excellent high temperature tensile strength while maintaining good oxidation resistance at temperatures up to 1400 degrees C. In an attempt to improve alloy ductility for accident tolerant fuel cladding applications, new low-Cr ODS FeCrAl alloys with decreased oxygen content were developed with the Zr alloying solute already gas atomized into the powder prior to mechanical alloying. The resultant Fe-10Cr-6.1Al-0.3Zr+0.3Y(2)O(3)(106ZY) powders were ball milled for 10, 20, and 40hr followed by consolidation via hot extrusion at temperatures ranging from 900 to 1050 degrees C. Increasing the mechanical alloying time decreased the resultant grain size and improved high temperature tensile properties. Decreasing the extrusion temperature refined the grain size and subsequently strengthened the ODS FeCrAl 106ZY alloys while lowering the ductility. Scanning transmission electron microscopy (STEM) and energy dispersive spectroscopy (EDS) demonstrated the Zr solute addition effectively sequestered impurity C and N within the matrix. The root mean square (RMS) hardening superposition model for yield strength shows good agreement with experimental results. Errors between predicted and experimental values are discussed within the scope of processing parameters. These 2nd generation 106ZY alloys show a distinct increase in alloy ductility without sacrificing the high temperature tensile properties characteristic of legacy or 1st generation ODS FeCrAl alloys. (C) 2018 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据