4.7 Article

Alpha Oscillations Modulate Preparatory Activity in Marmoset Area 8Ad

期刊

JOURNAL OF NEUROSCIENCE
卷 39, 期 10, 页码 1855-1866

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2703-18.2019

关键词

eye movement; frontal cortex; marmoset; parietal cortex; saccade

资金

  1. Canadian Institutes of Health Research [FRN148365]
  2. Canada First Research Excellence Fund

向作者/读者索取更多资源

Cognitive control often requires suppression of prepotent stimulus-driven responses in favor of less potent alternatives. Suppression of prepotent saccades has been shown to require proactive inhibition in the frontoparietal saccade network. Electrophysiological evidence in macaque monkeys has revealed neural correlates of such inhibition in this network; however, the interlaminar instantiation of inhibitory processes remains poorly understood because these areas lie deep within sulci in macaques, rendering them inaccessible to laminar recordings. Here, we addressed this gap by exploiting the mostly lissencephalic cortex of the common marmoset (Callithrix jacchus). We inserted linear electrode arrays into areas 8Ad-the putative marmoset frontal eye field-and the lateral intraparietal area of two male marmosets and recorded neural activity during performance of a task comprised of alternating blocks of trials requiring a saccade either toward a large, high-luminance stimulus or the inhibition of this prepotent response in favor of a saccade toward a small, low-luminance stimulus. We observed prominent task-dependent activity in both alpha/gamma bands of the LFP and discharge rates of single neurons in area 8Ad during a prestimulus task epoch in which the animals had been instructed which of these two tasks to perform but before peripheral stimulus onset. These data are consistent with a model in which rhythmic alpha-band activity in deeper layers inhibits spiking in upper layers to support proactive inhibitory saccade control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据