4.6 Article

Ambipolar transport in tin dioxide thin film transistors promoted by PCBM fullerene

期刊

出版社

SPRINGER
DOI: 10.1007/s10854-018-0131-9

关键词

-

资金

  1. CRC program
  2. Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program [RGPIN-2015-06004]
  3. Canada Foundation for Innovation (CFI) [212442]
  4. Science without Borders from the National Council of Technological and Scientific Developments (CNPq) [471359/2013-0]
  5. Coordination for the Improvement of Higher Education Personnel (CAPES)
  6. PNPD/CAPES

向作者/读者索取更多资源

In this article, the effect of phenyl-C-61-butyric acid methyl ester (PCBM) layer on the electrical performance of field-effect transistors (FETs) based on antimony-doped tin dioxide (Sb:SnO2) is reported. PCBM is a soluble variety of fullerene, n-type organic semiconductor, known to promote the p-type doping of semiconducting materials such as diamond and graphene, via charge transfer. Sb:SnO2 is an emerging low-cost transparent oxide semiconductor material that exhibits strong unipolar behavior (n-type). Ambipolar character in tin dioxide normally is not observed, however in this study we find that the deposition of PCBM on top of Sb:SnO2 promotes ambipolar behavior in Sb:SnO2 FETs. At negative gate bias (V-G<0) PCBM traps free electrons from the conduction band of SnO2 and from Sb donors, thus downshifting the Sb:SnO2 Fermi level (E-F), leading to a strong injection of holes in the valence band of Sb:SnO2. The p-type carrier concentration increases up to 8.6x10(11)cm(-2). Our results suggest that PCBM deposition decreases the current in the accumulation mode of electrons due to electron mobility decrease at V-G>0, and enhances the current in inversion mode. Besides, PCBM deposition also results in an increase of hole mobility at V-G<0.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据