4.7 Article

Highly collective atomic transport mechanism in high-entropy glass-forming metallic liquids

期刊

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2018.09.008

关键词

High-entropy alloy; Neutron scattering; Atomic relaxation; Diffusion

资金

  1. City University of Hong Kong research grant [7004695]

向作者/读者索取更多资源

Quasielastic neutron scattering (QENS) has been used to study the atomic relaxation process and microscopic transport mechanism in high-entropy glass-forming metallic (HE-GFM) liquids. Self-intermediate scattering functions obtained from the QENS data show unusually large stretching, which indicates highly heterogeneous atomic dynamics in HE-GFM liquids. In these liquids, a group of atoms over a length scale of about 21 angstrom diffuses collectively even well above the melting temperature. However, the temperature dependence of diffusion process in one of the HE-GFM liquid is Arrhenius, but in the other HE-GFM liquid it is non-Arrhenius. Although the glass-forming ability of these HE-GFM liquids is very poor, the diffusion coefficients obtained from the QENS data indicate the long range atomic transport process is much slower than that of the best metallic glass-forming liquids at their melting temperatures. (C) 2018 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据