4.5 Article

Deformation behavior of nanocrystalline and ultrafine-grained CoCrCuFeNi high-entropy alloys

期刊

JOURNAL OF MATERIALS RESEARCH
卷 34, 期 5, 页码 720-731

出版社

SPRINGER HEIDELBERG
DOI: 10.1557/jmr.2018.477

关键词

alloy; powder metallurgy; microstructure

资金

  1. National Research Foundation (NRF) of Korea
  2. Ministry of Science, ICT (MSIT) [2013K1A4A3055679, 2015R1D1A1A01060718, 2015R1A5A7037615, 2016M2B2A9A02943809, 2017M1A3A3A02015639]

向作者/读者索取更多资源

Nanocrystalline (NC) and ultrafine-grained (UFG) CoCrCuFeNi high-entropy alloy (HEA) with grain size ranging between 59 and 386 nm was produced via powder metallurgy and heat treatment. The as-sintered HEA exhibited two face-centered cubic (FCC) phases (CoCrFeNi-rich and Cu-rich phases) and a small grain size (59 nm), whereas the alloy after heat treatment at 1000 degrees C exhibited a CoCuFeNi-rich phase with FCC structure and relatively larger grain size (386 nm). Moreover, the yield strength decreased from 1930 to 883 MPa, and plastic strain to failure increased by 8-32%. In terms of microstructural evolution, grain boundary strengthening coupled with lattice distortion was the dominant strengthening mechanism for NC HEAs. Furthermore, the coefficient for boundary strengthening was higher in the HEAs than in the corresponding pure elemental metals with FCC structure, possibly because of significant lattice distortion. The UFG HEAs exhibited high strength and good ductility because of the activation of dislocation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据