4.6 Article

Intense red electroluminescence from ZnO: Sm3+/Tb3+ LED by efficient energy transfer from Tb3+to Sm 3+

期刊

JOURNAL OF LUMINESCENCE
卷 205, 期 -, 页码 243-247

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jlumin.2018.09.026

关键词

Red emission; Zinc oxide; Rare earth; Electroluminescence; Energy transfer

类别

资金

  1. Key Laboratory of Luminescence and Optical Information of China in Beijing Jiaotong University
  2. National Natural Science Foundation of China [61275058, 51772019]
  3. Beijing Jiaotong University Foundation [S16PD00220]

向作者/读者索取更多资源

Nowadays, though blue and green GaN-based light-emitting diodes (LEDs) are already successfully commercialized, full-color displays via GaN-based LEDs are difficult to realize due to the low output power of red GaNbased LEDs. Hence, highly efficient red LEDs should be studied. Herein, ZnO:Sm LED was prepared via magnetron co-sputtering. Orange-red electroluminescence originated from f-f transitions of Sm3+ is obtained from the device by applying a DC voltage. To enhance the emission of Sm3+, Tb was introduced in the ZnO:Sm film via co-sputtering. With a proper Tb concentration, the red emission from the ITO/ZnO: Sm, Tb/n-Si LED can be enhanced dramatically. Notably, the electroluminescence intensity is greatly dependent on the annealing temperature of ZnO:Sm/Tb layer. Therefore, influence of the annealing temperature on the morphology and crystalline structure of the ZnO:Sm/Tb film was investigated. Under a smaller input power, the electroluminescence intensity from the ITO/ZnO:2.1 mol% Sm, 3.4 mol% Tb/n-Si device is one order of magnitude higher than that of the ITO/ZnO:2.1 mol% Sm/n-Si device due to the energy transfer from Tb3+ to Sm3+. This results demonstrate the EL intensity from trivalent rare earth ions doped-inorganic semiconductor are expected to be greatly enhanced via an efficient ET from another co-doping RE ions as we recently reported. Besides, color of the EL emission move to the red direction after Tb doping. These results offering new ideas for highly efficient red LED used in full-color displays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据