4.5 Article

Mechanisms of ultrafine particle formation during coal combustion in a new swirl modification device

期刊

出版社

SPRINGER
DOI: 10.1007/s42243-018-0190-4

关键词

Coal combustion; Steel slag modification; Particulate matter; Elemental enrichment; Fuel-staged feed; Non-staged feed; Swirl modification device

资金

  1. State Key Laboratory of Solid Waste Reuse for Building Materials [SWR-2017-005]
  2. Science and Technology Planning Project of Handan City [1621212047]

向作者/读者索取更多资源

A new swirl combustion device was designed and enhanced, which realized the utilization of steel slag, achieved highly efficient and clean coal combustion, and simultaneously realized a fully elemental utilization of coal. The distribution laws of different sized particulate matter (PM) emission and the enrichment laws of elements in particles under diverse conditions (such as various excess air coefficients and different coal ratios) were systematically studied. The enrichments of PM under both non-staged and fuel-staged conditions were also investigated. The results indicated that fuel-staged combustion is more helpful in reducing PM emissions than non-staged combustion, and a suitable coal ratio is also beneficial for reducing PM emissions. The melted liquid steel slag drop captured the fly ash produced from pulverized combustion, thus reducing PM emission. The alkali metal elements (K, Na, and Mg), the trace elements (As and Ti), and S have an obvious enrichment tendency in PM1 and PM2.5. A different coal ratio under fuel-staged combustion has a significant influence on the enrichment of Al, Si, Ca, and Fe in PM1, whereas in PM2.5, PM4, and PM10, the effect of different coal ratios on the enrichment of each element is slight.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据