4.8 Review

Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 49, 期 5, 页码 1061-1069

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.6b00096

关键词

-

资金

  1. National Science Foundation [CHE-1266822]
  2. Welch Foundation [A-1775]
  3. Division Of Chemistry
  4. Direct For Mathematical & Physical Scien [1266022] Funding Source: National Science Foundation

向作者/读者索取更多资源

Noncovalent interactions are ubiquitous in organic systems, and can play decisive roles in the outcome of asymmetric organocatalytic reactions. Their prevalence, combined with the often subtle line separating favorable dispersion interactions from unfavorable steric interactions, often complicates the identification of the particular non covalent interactions responsible for stereoselectivity. Ultimately, the stereoselectivity of most organocatalytic reactions hinges on the balance of both favorable and unfavorable noncovalent interactions in the stereocontrolling transition state (TS). In this Account, we provide an overview of our attempts to understand the role of noncovalent interactions in organocatalyzed reactions and to develop new computational tools for organocatalyst design. Following a brief discussion of noncovalent interactions involving aromatic rings and the associated challenges capturing these effects computationally, we summarize two examples of chiral phosphoric acid catalyzed reactions in which noncovalent interactions play pivotal, although somewhat unexpected, roles. In the first, List's catalytic asymmetric Fischer indole reaction, we show that both pi-stacking and CH/pi interactions of the substrate with the 3,3'-aryl groups of the catalyst impact the stability of the stereocontrolling TS. However, these noncovalent interactions oppose each other, with pi-stacking interactions stabilizing the TS leading to one enantiomer and CH/pi interactions preferentially stabilizing the competing TS. Ultimately, the CH/pi interactions dominate and, when combined with hydrogen bonding interactions, lead to preferential formation of the observed product. In the second example, a series of phosphoric acid catalyzed asymmetric ring openings of meso-epoxides, we show that noncovalent interactions of the substrates with the 3,3'-aryl groups of the catalyst play only an indirect role in stereoselectivity. Instead, the stereoselectivity of these reactions are driven by the electrostatic stabilization of a fleeting partial positive charge in the S(N)2-like transition state by the chiral electrostatic environment of the phosphoric acid catalyst. Next, we describe our studies of bipyridine N-oxide and N,N'-dioxide catalyzed alkylation reactions. Based on several examples, we demonstrate that there are many potential arrangements of ligands around a hexacoordinate silicon in the stereocontrolling TS, and one must consider all of these in order to identify the lowest-lying TS structures. We also present a model in which electrostatic interactions between a formyl CH group and a chlorine in these TSs underlie the enantioselectivity of these reactions. Finally, we discuss our efforts to develop computational tools for the screening of potential organocatalyst designs, starting in the context of bipyridine N,N'-dioxide catalyzed alkylation reactions. Our new computational tool kit (AARON) has been used to design highly effective catalysts for the asymmetric propargylation of benzaldehyde, and is currently being used to screen catalysts for other reactions. We conclude with our views on the potential roles of computational chemistry in the future of organocatalyst design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据