4.8 Review

New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 49, 期 6, 页码 1302-1310

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.6b00093

关键词

-

资金

  1. National Natural Science Foundation of China [21133002, 21302006, 21232001, 21473086]
  2. MOST of China [2013CB911501]
  3. Shenzhen Science and Technology Innovation Committee [KQTD201103, KQTD20150717-103157174]

向作者/读者索取更多资源

CONSPECTUS: With new advances in theoretical methods and increased computational power, applications of computational chemistry are becoming practical and routine in many fields of chemistry. In organic chemistry, computational chemistry plays an indispensable role in elucidating reaction mechanisms and the origins of various selectivities, such as chemo-, regio-, and stereoselectivities. Consequently, mechanistic understanding improves synthesis and assists in the rational design of new catalysts. In this Account, we present some of our recent works to illustrate how computational chemistry provides new mechanistic insights for improvement of the selectivities of several organic reactions. These examples include not only explanations for the existing experimental observations, but also predictions which were subsequently verified experimentally. This Account consists of three sections discuss three different kinds of selectivities. The first section discusses the regio- and stereoselectivities of hydrosilylations of alkynes, mainly catalyzed [Cp*Ru(MeCN)(3)](+) or [CpRu(MeCN)(3)](+). Calculations suggest a new mechanism that involves a key ruthenacyclopropene intermediate. This mechanism not only explains the unusual Markovnikov regio-selectivity and anti-addition stereoselectivity observed by Trost and co-workers, but also motivated further experimental investigations. New intriguing experimental observations and further theoretical studies led to an extension of the reaction mechanism. The second section includes three cases of meta-selective C-H activation of aryl compounds. In the case of Cu-catalyzed selective meta-C-H activation of aniline, a new mechanism that involves a Cu(III)-Ar-mediated Heck-like transition state, in which the Ar group acts as an electrophile, was proposed. This mechanism predicted a higher reactivity for more electron-deficient Ar groups, which was supported by experiments. For two template-mediated, meta-selective C-H bond activations catalyzed by Pd(II), different mechanisms were derived for the two templates. One involves a dimeric Pd-Pd or Pd-Ag active catalyst, and the other involves a monomeric Pd catalyst, in which a monoprotected amino acid coordinates in a bidentate fashion and serves as an internal base for C-H activation. The third section discusses a desymmetry strategy in asymmetric synthesis. The construction of rigid skeletons is critical for these catalysts to distinguish two prochiral groups. Overall, fruitful collaborations between computational and experimental chemists have provided new and comprehensive mechanistic understanding and insights into these useful reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据