4.5 Article

3-D numerical modelling of greenwater loading on fixed ship-shaped FPSOs

期刊

JOURNAL OF FLUIDS AND STRUCTURES
卷 84, 期 -, 页码 283-301

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jfluidstructs.2018.11.003

关键词

Greenwater; Fixed ship-shaped FPSOs; 3-D numerical modelling; OpenFOAM

资金

  1. ARC Industrial Transformation Research Hub for Offshore Floating Facilities - Australian Research Council
  2. Woodside Energy
  3. Shell
  4. Bureau Veritas
  5. Lloyd's Register, Australia [IH140100012]
  6. Australian Government
  7. Government of Western Australia
  8. Shell EMI Offshore Engineering Initiative at UWA, Australia

向作者/读者索取更多资源

This work is focused on the assessment of greenwater overtopping onto fixed ship-shaped FPSO models using three dimensional (3-D) Computational Fluid Dynamics (CFD) simulations. Good agreement between the numerical results and published experimental data from Barcellona et al. (2003) indicates that 3-D CFD is an effective tool which may be used to assess greenwater associated with an incident wave group. Different wall-sided bow shapes are investigated numerically, and the results provide insight into how the bow shape influences the evolution of on-deck flows, and the horizontal force on a vertical wall spanning the full deck width for incident waves approaching normal to the bow. It is found that the horizontal force, thus, the horizontal momentum of greenwater flows, is a result of the combined action of water-front velocities and the corresponding water volume impacting on the structures. For the bow shapes considered in this study, although clear differences in on-deck flow are observed for different bow shape, differences in force on the vertical wall are relatively small. Simulations for a 2-D vertical rectangular box that has the same longitudinal section as the 3-D model FPSOs give somewhat similar results to 3-D predictions along the centre-line. This similarity may be due partly to the fact that increases in on-deck flow velocity due to increased freeboard exceedance in the 2-D simulations compensates for a lack of focusing of the on-deck flow observed in the 3-D simulations. This finding has implications for understanding how computationally cheaper 2-D greenwater simulations relate to more realistic 3-D greenwater events. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据