4.7 Article

Subgrid modelling for two-dimensional turbulence using neural networks

期刊

JOURNAL OF FLUID MECHANICS
卷 858, 期 -, 页码 122-144

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2018.770

关键词

computational methods; quasi-geostrophic flows; turbulence modelling

资金

  1. US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research [DE-SC0019290]
  2. NVIDIA Corporation
  3. Oklahoma NASA EPSCoR Research Initiation Grant programme
  4. Norwegian Research Council
  5. OPWIND: Operational Control for Wind Power Plants [268044/E20]
  6. agency of the United States Government

向作者/读者索取更多资源

In this investigation, a data-driven turbulence closure framework is introduced and deployed for the subgrid modelling of Kraichnan turbulence. The novelty of the proposed method lies in the fact that snapshots from high-fidelity numerical data are used to inform artificial neural networks for predicting the turbulence source term through localized grid-resolved information. In particular, our proposed methodology successfully establishes a map between inputs given by stencils of the vorticity and the streamfunction along with information from two well-known eddy-viscosity kernels. Through this we predict the subgrid vorticity forcing in a temporally and spatially dynamic fashion. Our study is both a priori and a posteriori in nature. In the former, we present an extensive hyper-parameter optimization analysis in addition to learning quantification through probability-density-function-based validation of subgrid predictions. In the latter, we analyse the performance of our framework for flow evolution in a classical decaying two-dimensional turbulence test case in the presence of errors related to temporal and spatial discretization. Statistical assessments in the form of angle-averaged kinetic energy spectra demonstrate the promise of the proposed methodology for subgrid quantity inference. In addition, it is also observed that some measure of a posteriori error must be considered during optimal model selection for greater accuracy. The results in this article thus represent a promising development in the formalization of a framework for generation of heuristic-free turbulence closures from data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据