4.7 Article

Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 70, 期 1, 页码 315-327

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/ery347

关键词

Glandular trichomes; herbivores; jasmonic acid; phenolics; plant defenses; salicylic acid; thrips; tomato; Western flower thrips

资金

  1. STW Perspective program 'Green Defense against Pests' (GAP) [13553]
  2. Rijk Zwaan
  3. Dummen Orange
  4. Deliflor
  5. Dekker Chrysanten
  6. Incotec
  7. German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig - German Research Foundation [FZT 118]

向作者/读者索取更多资源

Ultraviolet (UV) radiation can modulate plant defenses against herbivorous arthropods. We investigated how different UV exposure times and irradiance intensities affected tomato (Solanum lycopersicum) resistance to thrips (Frankliniella occidentalis) by assessing UV effects on thrips-associated damage and host-selection, selected metabolite and phytohormone contents, expression of defense-related genes, and trichome density and chemistry, the latter having dual roles in defense and UV protection. Short UV daily exposure times increased thrips resistance in the cultivar 'Moneymaker' but this could not be explained by changes in the contents of selected leaf polyphenols or terpenes, nor by trichome-associated defenses. UV irradiance intensity also affected resistance to thrips. Further analyses using the tomato mutants def-1, impaired in jasmonic acid (JA) biosynthesis, od-2, defective in the production of functional type-VI trichomes, and their wild-type, 'Castlemart', showed that UV enhanced thrips resistance in Moneymaker and od-2, but not in def-1 and Castlemart. UV increased salicylic acid (SA) and JA-isoleucine concentrations, and increased expression of SA- and JA-associated genes in Moneymaker, while inducing expression of JA-defensive genes in od-2. Our results demonstrate that UV-mediated enhancement of tomato resistance to thrips is probably associated with the activation of JA-associated signaling, but not with plant secondary metabolism or trichome-related traits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据