4.4 Article

Kinetic and Thermodynamic Analyses of Spontaneous Exchange between High-Density Lipoprotein-Bound and Lipid-Free Apolipoprotein A-I

期刊

BIOCHEMISTRY
卷 54, 期 4, 页码 1123-1131

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi501345j

关键词

-

资金

  1. Japan Society for the Promotion of Science [25293006, 25670014]
  2. Tokushima University
  3. Grants-in-Aid for Scientific Research [25293006, 25670014] Funding Source: KAKEN

向作者/读者索取更多资源

It is thought that apolipoprotein A-I (apoA-I) spontaneously exchanges between high-density lipoprotein (HDL)-bound and lipid-free states, which is relevant to the occurrence of pre beta-HDL particles in plasma. To improve our understanding of the mechanistic basis for this phenomenon, we performed kinetic and thermodynamic analyses for apoA-I exchange between discoidal HDL-bound and lipid-free forms using fluorescence-labeled apoA-I variants. Gel filtration experiments demonstrated that addition of excess lipid-free apoA-I to discoidal HDL particles promotes exchange of apoA-I between HDL-associated and lipid-free pools without alteration of the steady-state HDL particle size. Kinetic analysis of time-dependent changes in NBD fluorescence upon the transition of NBD-labeled apoA-I from HDL-bound to lipid-free state indicates that the exchange kinetics are independent of the collision frequency between HDL-bound and lipid-free apoA-I, in which the lipid binding ability of apoA-I affects the rate of association of lipid-free apoA-I with the HDL particles and not the rate of dissociation of HDL-bound apoA-I. Thus, C-terminal truncations or mutations that reduce the lipid binding affinity of apoA-I strongly impair the transition of lipid-free apoA-I to the HDL-bound state. Thermodynamic analysis of the exchange kinetics demonstrated that the apoA-I exchange process is enthalpically unfavorable but entropically favorable. These results explain the thermodynamic basis of the spontaneous exchange reaction of apoA-I associated with HDL particles. The altered exchangeability of dysfunctional apoA-I would affect HDL particle rearrangement, leading to perturbed HDL metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据