4.4 Article

Mechanical behaviour of jute fibre-reinforced polyester composite: Characterization of damage mechanisms using acoustic emission and microstructural observations

期刊

JOURNAL OF COMPOSITE MATERIALS
卷 53, 期 24, 页码 3377-3394

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998318822128

关键词

Natural fibres; polymer-matrix composites; acoustic emission; damage mechanisms

资金

  1. PROFAS B+ program

向作者/读者索取更多资源

The present work deals with the mechanical characterization of a woven jute fabrics reinforced polyester resin composite. Two stacking sequences were considered: [0](8) and [+45/-45](2S). In-situ acoustic emission technique, X-ray computed tomography (X-ray CT) and post-mortem microscopic observations were used to characterise the damage mechanisms and to follow their evolutions during uniaxial tension. The microstructural analysis and X-ray CT revealed the following damage modes for the two lay-ups: fibre-matrix debondings which constitute the dominant mechanism, matrix crackings and fibre breakages and pull-outs. The acoustic emission data were processed using an unsupervised pattern recognition technique which combines principal components analysis and k-means optimized by a genetic algorithm. Both temporal and frequential features of acoustic emission signals were considered. The Laplacian score and dendrogram were used to determine the relevant and uncorrelated descriptors for clustering. Three clusters of events were obtained and the waveforms of each one were examined. Furthermore, the frequency contents of signals of each cluster were accurately investigated using power density spectrum and smoothed pseudo Wigner-Ville time-frequency distribution and the discrepancies between clusters are highlighted. Cluster 1 (Cl 1) characterized by signals of low frequency and intermediate amplitude, cluster 2 (Cl 2) characterized by signals of higher frequency and an amplitude similar to that of Cl 1 and cluster 3 (Cl 3) characterized by signals of higher amplitude. A correlation between the clusters and the damage mechanisms was established by means of interrupted tensile tests: Cl 1 is assigned to the matrix cracking, Cl 2 to the fibre-matrix debonding and Cl 3 to the fibre breakage and pull-out. The kinetic of evolution of each damage mode was monitored for the two stacking sequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据