4.7 Article

Tuning carbon nanotube-grafted core-shell-structured cobalt selenide@carbon hybrids for efficient oxygen evolution reaction

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 533, 期 -, 页码 503-512

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.08.104

关键词

CoSe2; Zeolite imidazole frameworks; Oxygen evolution reaction; Alkaline medium

资金

  1. National Natural Science Foundation of China [91545125, U1662121]
  2. Youth Innovation Promotion Association of CAS

向作者/读者索取更多资源

The electrochemical oxygen evolution reaction (OER) is sparked extensive interest in efficient energy storage and conversion. Cobalt Selenide (CoSe2) is believed to be one of the promising candidates for OER based on Yang Shao-Horn's principle. However, owing to low exposure of active sites and/or low efficiency of electron transfer, the electrocatalytic activity of CoSe2 is far less than expected. In this work, a novel carbon nanotubes (CNT) grafted 3D core-shell structured CoSe2@C-CNT nanohybrid is developed by a general hydrothermal-calcination strategy. Zeolite imidazole frameworks (ZIF) was used as the precursor to synthesis of the materials. It is found that both the calcination temperature and the selenium content can significantly regulate the catalytic performance of the hybrids. The obtained best catalysts requires the overpotential of only 306 mV and 345 mV to reach a current density of 10 mA cm(-2) and 50 mA cm(-2) in 1.0 MKOH medium, respectively. It also exhibits a small Tafel slope of 46 mV dec(-1) and excellent durability, which is superior to most of recently reported CoSe2-based and Co-based materials. These superior performances can be ascribed to synergistic effects of the highly active CoSe2 nanostructure, defect carbon species and the carbon nanotubes exist in the catalyst. Besides, the unique morphology leads to large electrochemical surface area of the catalyst, which is in favor of the exposure of active sites for OER. Due to high efficiency, low cost and excellent durability for OER, the prepared catalysts showed can be potentially used to substitute noble metals utilized in related energy storage and conversion devices. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据