4.7 Article

Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 533, 期 -, 页码 750-761

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.09.003

关键词

Alizarin yellow R wastewater; Degradation; Electrocatalysis; Ti/PbO2-Sm2O3 composite electrode

资金

  1. Longshan Academic Talent Research Supporting Program of SWUST [18LZX322, 17LZX406]

向作者/读者索取更多资源

In this work, a novel Ti/PbO2-Sm2O3 composite electrode with high electrocatalytic activity is successfully fabricated via simple electrodeposition method and further investigated for electrochemical degradation of alizarin yellow R (AYR) wastewater. The test results of X-ray diffraction, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy confirm that Sm2O3 is successfully composited with PbO2. The coating of Ti/PbO2-Sm2O3 composite electrode stacked by typical pyramid-like micro-particles exhibits smooth and compact surface morphology which is conducive to enhancing the corrosion resistance of electrode. Furthermore, electrochemical performance tests indicate that Ti/PbO2-Sm2O3 composite electrode has advantages of higher oxygen evolution potential, lower charge transfer resistance and longer lifetime over Ti/PbO2 electrode. Electrolyte concentration, plate space, initial pH and cell voltage are assessed to optimize the degradation condition of AYR. The results show that COD removal efficiency and degradation efficiency of AYR on Ti/PbO2-Sm2O3 composite electrode reach up to 79.90% and 80.00% under the optimal conditions (Na2SO4 electrolyte concentration 9.0 g L-1, plate space 3.0 cm, initial pH 5, cell voltage 3.0 V and electrolysis time 150 min), respectively. The degradation of AYR follows pseudo-first-order reaction kinetics, and a plausible mineralization pathway of AYR is proposed on the basis of the identification of major intermediate products. These results suggest that Ti/PbO2-Sm2O3 composite electrode is a promising candidate for electrocatalytic degradation of AYR wastewater. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据