4.7 Article

Ni, Eu-Co doping effect on the photocatalytic activity and magnetic recyclability in multifunctional single-phase photocatalysts Bi5FeTi3O15

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 534, 期 -, 页码 499-508

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.09.054

关键词

Bi5FeTi3O15; Doping; Photocatalyst; Visible-light; Ferromagnetism; Recyclability

资金

  1. National Natural Science Foundation of China [51402256, 11374227, 21673202]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

Bi5-yEuyFe1-xNixTi3O15 (x = 0, 0.05, 0.10, 0.15, 0.20; y = 0, 0.1, 0.3, 0.5) nanosheet-based nanoflowers as magnetic recyclable visible-light photocatalysts toward Rhodamine B (RhB) degradation were successfully synthesized by a hydrothermal method. As started from Bi5FeTi3O15 (BFTO), Ni was firstly employed to substitute for Fe at B-site to improve the magnetism for magnetic recyclability. After Ni doping (Bi5Fe1-xNixTi3O15: BFNTO-x, x = 0, 0.05, 0.10, 0.15, 0.20), both the ferromagnetism and photocatalytic activity were obviously improved, where BFNTO-0.1 (Bi5Fe0.9Ni0.1Ti3O15) exhibited the maximum remnant and statured magnetization of 0.14 and 0.82 emu/g respectively. To further improve the magnetism and photocatalytic activity, Eu was chosen to substitute for Bi at A-site. Both ferromagnetism and photocatalytic properties of Bi5-yEuyFe0.9Ni0.1Ti3O15 (BEFNTO-y, y = 0, 0.1, 0.3, 0.5) were further improved by optimizing the doped europium content. The BEFNTO-0.1 (Bi4.9Eu0.1Fe0.9Ni0.1Ti3O15) showed enhanced photocatalytic activity and could be recycled simply by applying a magnet bar. This work may provide a basis for further developing new visible-light photocatalysts because the layer-structured Aurivillius phase has significant potential in elemental doping and further structural engineering applications. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据