4.7 Article

The effects of bismuth (III) doping and ultrathin nanosheets construction on the photocatalytic performance of graphitic carbon nitride for antibiotic degradation

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 533, 期 -, 页码 513-525

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.08.113

关键词

g-C3N4; Bismuth (III) doping; Ultrathin nanosheets; Photocatalyst; Tetracycline

资金

  1. Chinese National Natural Science Foundation of China [21207093]
  2. Liaoning University [LJQ2014023]
  3. Natural Science Foundation of Shenyang Science and Technology Bureau [18-013-0-02]

向作者/读者索取更多资源

To further enhance the photocatalytic performance of graphitic carbon nitride (g-C3N4), we rationally combined two strategies (foreign metal doping and ultrathin nanosheet construction) to synthesize bismuth (III) (Bi3+) doped ultrathin g-C3N4 nanosheets (Bi-CNNS) via one-step thermal polymerization method using melamine as the raw material, bismuth nitrate pentahydrate (Bi(NO3)(3)center dot 5H(2)O) as the dopant source, and nitric acid (HNO3) and acetic acid (AC) as soft templates for the ultrathin nanosheets construction. The Bi-CNNS catalysts exhibited an excellent photocatalytic performance in tetracycline (TC) degradation. The TC removal efficiency reached to be 94.1% in 30 min under visible-light irradiation over 0.03Bi-CNNS, which is 6.03 times higher than that of pure g-C3N4 (CN). The higher specific surface area, narrower bandgap, the improved photoexcited electron-hole pair transfer and separation efficiency, and prolonged carrier lifetimes in the Bi3+-doped ultrathin g-C3N4 nanosheets led to a significantly enhanced photocatalytic performance. The main radical species responsible for the degradation of tetracycline over 0.03Bi-CNNS were O-center dot(2)- and (OH)-O-center dot. Moreover, the possible photodegradation intermediate products of TC were detected by gas chromatography-mass spectroscopy (GC-MS), and a possible pathway was proposed. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据