4.0 Article

The Correction of Systematic Error due to Plaster and Fiberglass Casts on HR-pQCT Bone Parameters Measured In Vivo at the Distal Radius

期刊

JOURNAL OF CLINICAL DENSITOMETRY
卷 22, 期 3, 页码 401-408

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jocd.2018.11.005

关键词

High-resolution peripheral quantitative computed tomography; bone mineral density; bone microarchitecture; distal radius fracture; fracture healing; cast

向作者/读者索取更多资源

Due to difficulty assessing healing of distal radius fractures using conventional radiography, there is interest in using high resolution peripheral quantitative computed tomography (HR-pQCT) to track healing at the microarchitectural level. Unfortunately, the plaster-of-Paris and fiberglass casts used to immobilize fractures affect HR-pQCT measurements due to beam hardening, and increased noise. The challenge is compounded because casts have variable thickness, and an individual patient will often have their cast changed 2-3 times during the course of treatment. This study quantifies the effect of casts within a clinically relevant range of thicknesses on measured bone parameters at the distal radius, and establishes conversion equations to correct for systematic error in due to cast presence. Eighteen nonfractured participants were scanned by HR-pQCT in three conditions: no cast, plaster-of-Paris cast, and fiberglass cast. Measured parameters were compared between the baseline scan (no cast) and each cast scan to evaluate if systematic error exists due to cast presence. A linear regression model was used to determine an appropriate conversion for parameters that were found to have systematic error. Plaster-of-Paris casts had a greater range of thicknesses (3.2-9.5 mm) than the fiberglass casts (3.0-5.4 mm), and induced a greater magnitude of systematic error overall. Key parameters of interest were bone mineral density (total, cortical, and trabecular) and trabecular bone volume fraction, all of which were found to have systematic error due to presence of either cast type. Linear correlations between baseline and cast scans for these parameters were excellent (R-2 > 0.98), and appropriate conversions could be determined within a margin of error less than a +/- 6% for the plaster-of-Paris cast, and +/- 4% for the fiberglass cast. We have demonstrated the effects of cast presence on bone microarchitecture measurements, and presented a method to correct for systematic error, in support of future use of HR-pQCT to study fracture healing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据