4.7 Article

Hydrogen production with a photovoltaic thermal system enhanced by phase change materials, Shiraz, Iran case study

期刊

JOURNAL OF CLEANER PRODUCTION
卷 215, 期 -, 页码 1262-1278

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.01.022

关键词

PVT system; Hydrogen production; Phase change materials; Electrolyzer; Energy and exergy efficiency

向作者/读者索取更多资源

Whereas Photovoltaic Thermal Systems (PVT), Phase Change Materials (PCM) and Proton Exchange Membrane (PEM) electrolyzer have been thoroughly studied individually, the effects of their combination need to be more investigated. The current study proposed a new PVT system integrated with PCM and PEM electrolyzer to produce hydrogen in a hydrogen fuel filling station. Based on the energy and exergy balance equations, a mathematical model is developed to analyse the effects of different types of PV and PCM sets on the thermal and electrical performances. Variations in the temperature of system components, generated electricity, hydrogen production as well as the energy/exergy amounts and efficiencies with time are presented for different effective parameters. Based on the obtained results, we found that PV type is one of the most dominant parameters of the system. PCM utilization improves the electrical, thermal energies and exergy efficiencies. The highest daily amount of produced hydrogen is obtained for 16th August 2018 with mono-crystalline semitransparent PV and 120 kg of RT35 PCM type (88.71 gr/day). While the hydrogen production for the same PVT system without PCM is 5.32% less than the case with PCM. Moreover, the maximum diurnal energy efficiency is obtained 35.04% for mono crystalline semitransparent PV and RT35 PCM during the summer, while the maximum daily exergy efficiency of 15.17% is achieved for the integration of mono-crystalline semitransparent PV and RT28 PCM type in the winter. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据