4.7 Article

Does capillary evaporation limit the accessibility of nonaqueous electrolytes to the ultrasmall pores of carbon electrodes?

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 149, 期 23, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5064360

关键词

-

资金

  1. Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences

向作者/读者索取更多资源

Porous carbons have been widely utilized as electrode materials for capacitive energy storage. Whereas the importance of pore size and geometry on the device performance has been well recognized, little guidance is available for identification of carbon materials with ideal porous structures. In this work, we study the phase behavior of ionic fluids in slit pores using the classical density functional theory. Within the framework of the restricted primitive model for nonaqueous electrolytes, we demonstrate that the accessibility of micropores depends not only on the ionic diameters (or desolvation) but also on their wetting behavior intrinsically related to the vapor-liquid or liquid-liquid phase separation of the bulk ionic systems. Narrowing the pore size from several tens of nanometers to subnanometers may lead to a drastic reduction in the capacitance due to capillary evaporation. The wettability of micropores deteriorates as the pore size is reduced but can be noticeably improved by raising the surface electrical potential. The theoretical results provide fresh insights into the properties of confined ionic systems beyond electric double layer models commonly employed for rational design/selection of electrolytes and electrode materials. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据