4.7 Article

Heat transfer statistics in mixed quantum-classical systems

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 149, 期 22, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5066025

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Singapore-MIT Alliance for Research and Technology (SMART)
  3. NSERC Discovery Grant
  4. Canada Research Chair program

向作者/读者索取更多资源

The modelling of quantum heat transfer processes at the nanoscale is crucial for the development of energy harvesting and molecular electronic devices. Herein, we adopt a mixed quantum-classical description of a device, in which the open subsystem of interest is treated quantum mechanically and the surrounding heat baths are treated in a classical-like fashion. By introducing such a mixed quantum-classical description of the composite system, one is able to study the heat transfer between the subsystem and bath from a closed system point of view, thereby avoiding simplifying assumptions related to the bath time scale and subsystem-bath coupling strength. In particular, we adopt the full counting statistics approach to derive a general expression for the moment generating function of heat in systems whose dynamics are described by the quantum-classical Liouville equation (QCLE). From this expression, one can deduce expressions for the dynamics of the average heat and heat current, which may be evaluated using numerical simulations. Due to the approximate nature of the QCLE, we also find that the steady state fluctuation symmetry holds up to order (h) over bar for systems whose subsystem-bath couplings and baths go beyond bilinear and harmonic, respectively. To demonstrate the approach, we consider the nonequilibrium spin boson model and simulate its time-dependent average heat and heat current under various conditions. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据