4.7 Article

Vacuum ultraviolet excited state dynamics of the smallest ring, cyclopropane. II. Time-resolved photoelectron spectroscopy and ab initio dynamics

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 149, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5044402

关键词

-

资金

  1. Natural Science and Engineering Research Council (NSERC)
  2. Engineering and Physical Sciences Research Council (EPSRC)

向作者/读者索取更多资源

The vacuum-ultraviolet photoinduced dynamics of cyclopropane (C3H6) were studied using time-resolved photoelectron spectroscopy (TRPES) in conjunction with ab initio quantum dynamics simulations. Following excitation at 160.8 nm, and subsequent probing via photoionization at 266.45 nm, the initially prepared wave packet is found to exhibit a fast decay (<100 fs) that is attributed to the rapid dissociation of C3H6 to ethylene (C2H4) and methylene (CH2). The photodissociation process proceeds via concerted ring opening and C-C bond cleavage in the excited state. Ab initio multiple spawning simulations indicate that ring-opening occurs prior to dissociation. The dynamics simulations were subsequently employed to simulate a TRPES spectrum, which was found to be in excellent agreement with the experimental result. On the basis of this agreement, the fitted time constants of 35 +/- 20 and 57 +/- 35 fs were assigned to prompt (i) dissociation on the lowest-lying excited state, prepared directly by the pump pulse, and (ii) non-adiabatic relaxation from higher-lying excited states that lead to delayed dissociation, respectively. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据