4.7 Article

Particle-scale statistical theory for hydrodynamically induced polar ordering in microswimmer suspensions

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 149, 期 14, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5048304

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [LO 418/17-2, ME 3571/2-2, SPP 1726]

向作者/读者索取更多资源

Previous particle-based computer simulations have revealed a significantly more pronounced tendency of spontaneous global polar ordering in puller (contractile) microswimmer suspensions than in pusher (extensile) suspensions. We here evaluate a microscopic statistical theory to investigate the emergence of such an order through a linear instability of the disordered state. For this purpose, input concerning the orientation-dependent pair-distribution function is needed, and we discuss the corresponding approaches, particularly a heuristic variant of the Percus test-particle method applied to active systems. Our theory identifies an inherent evolution of polar order in planar systems of puller microswimmers, if mutual alignment due to hydrodynamic interactions overcomes the thermal dealignment by rotational diffusion. In our theory, the cause of orientational ordering can be traced back to the actively induced hydrodynamic rotation-translation coupling between the swimmers. Conversely, disordered pusher suspensions remain linearly stable against homogeneous polar orientational ordering. We expect that our results can be confirmed in experiments on (semi-)dilute active microswimmer suspensions, based, for instance, on biological pusher-and puller-type swimmers. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据