4.3 Article

Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California

期刊

JOURNAL OF CHEMICAL ECOLOGY
卷 44, 期 12, 页码 1101-1114

出版社

SPRINGER
DOI: 10.1007/s10886-018-1029-y

关键词

Nestmate recognition; Chemical communication; Water-proofing; Linepithema humile; Invasive species; n-alkanes; n-alkenes; Methyl-branched alkanes; Gas chromatography; Mass spectrometry

资金

  1. US National Science Foundation [IOS-1557934/1557961]
  2. USDA National Institute of Food and Agriculture [2016-67013-24749]
  3. USDA Hatch Project [CA-B-INS-0087-H]
  4. UC Berkeley Bakar Fellows program
  5. Direct For Biological Sciences
  6. Division Of Integrative Organismal Systems [1557934] Funding Source: National Science Foundation

向作者/读者索取更多资源

Cuticular hydrocarbons (CHCs), the dominant fraction of the insects' epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant Linepithema humile, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant's expanded range, yet this variation would largely conflict with the vastlyextended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition. n-Alkanes and n-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of L. humile into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据