4.4 Article

Mapping Allostery through Computational Glycine Scanning and Correlation Analysis of Residue-Residue Contacts

期刊

BIOCHEMISTRY
卷 54, 期 7, 页码 1534-1541

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi501152d

关键词

-

资金

  1. American Chemical Society Petroleum Research Fund [52616-DNI6]
  2. National Science Foundation
  3. National Institutes of Health [DK097337-01]
  4. JDRD program of Science Alliance at UT-ORNL

向作者/读者索取更多资源

Understanding allosteric mechanisms is essential for the physical control of molecular switches and downstream cellular responses. However, it is difficult to decode essential allosteric motions in a high-throughput scheme. A general two-pronged approach to performing automatic data reduction of simulation trajectories is presented here. The first step involves coarse-graining and identifying the most dynamic residue-residue contacts. The second step is performing principal component analysis of these contacts and extracting the large-scale collective motions expressed via these residue-residue contacts. We demonstrated the method using a protein complex of nuclear receptors. Using atomistic modeling and simulation, we examined the protein complex and a set of 18 glycine point mutations of residues that constitute the binding pocket of the ligand effector. The important motions that are responsible for the allostery are reported. In contrast to conventional induced-fit and lock-and-key binding mechanisms, a novel frustrated-fit binding mechanism of RXR for allosteric control was revealed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据