4.5 Article

Tailoring degradation rates of silk fibroin scaffolds for tissue engineering

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.36537

关键词

silk fibroin; scaffold; controlled degradation rate; tissue regeneration

向作者/读者索取更多资源

In tissue regenerative medicine, developing tunable degradation rate of biomaterials for predictive functional outcomes remains critical. The implanted scaffolds should degrade gradually along with the tissue regeneration, and the optimal degradation rate of scaffold depends on the tissue type to be regenerated. Herein, the tunable degradation rates of silk fibroin (SF) scaffolds were fabricated through controlling dissolution, hydrolyzing conditions, and freeze-drying. The pore size, water adsorption capacity, and mechanical properties of scaffolds were associated with their average molecular weights. Moreover, in vitro cytotoxicity tests demonstrated that rapid degradation of SF scaffolds would facilitate the Schwann cells proliferation. Furthermore, in vitro enzymatic degradation and in vivo subcutaneous implantation experiments illustrated that SF scaffolds degradation behaviors could be well regulated. Immunohistochemistry staining experiments suggested that SF scaffold-degradation products could promote the endothelial cells proliferation. These results indicate that SF tunable degradation rates are promising candidates in regenerative medicine. (c) 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 104-113, 2019.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据